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Abstract—The dilute, self-consistent, Mori-Tanaka and differential micromechanics theories are
extended to consider the coupled electroelastic behavior of piezoelectric composite materials. The
application of each theory is based on Deeg’s (1980, unpublished) rigorous three-dimensional
electroelastic solution of an ellipsoidal inclusion in an infinite piezoelectric medium. Each micro-
mechanics theory is implemented through a matrix formulation in which the effective electroelastic
moduli are conveniently represented by a 9 x 9 matrix. As in the corresponding uncoupled elastic
and electric behavior, the dilute and Mori-Tanaka schemes return explicit estimates for the effective
electroelastic moduli. The self consistent method, however, returns an implicit nonlinear algebraic
matrix equation for the effective electroelastic moduli. The differential scheme formally results in a
set of 81 coupled nonlinear ordinary differential equations for the effective electroelastic moduli. In
general, recourse to a numerical scheme is required for the self-consistent and differential theories.
Numerical results are presented to illustrate the performance of each model for some typical
composite microstructures and the models are compared in light of existing experimental data.

1. INTRODUCTION

Piezoelectric ceramic/polymer composites have become attractive candidates for use in
transducers for underwater and biomedical imaging applications. Interest in their use is
attributed to their enhanced electromechanical coupling characteristics as compared to
the strong, piezoelectric ceramic and compliant (possibly piezoelectrically active) polymer
constituents. Their high compliance and low density result in better acoustic impedance
matching with water than PZT ceramics. Piezoelectric composites have been developed in
many forms including piezoelectric ceramic fibers or particles embedded in a polymer matrix
and bored, polymer filled holes in a solid piezoelectric ceramic matrix. In addition, voided
piezoelectric ceramics and polymers have been shown to possess electroelastic properties
superior to the unvoided material. In these materials, the voids are sometimes impregnated
with a polymer. The three-dimensional connectivity (Newnham et al., 1978) of the con-
stituents of a piezoelectric composite may be such that a discrete phase is embedded in
another serving as a matrix, or they may be combined such that each can be treated on
equal footing. Improvements in electromechanical properties of piezoelectric composites,
however, are not without their drawbacks. The coupled electroelastic behavior of the
constituents presents a level of difficulty not present in the design and analysis of the
mechanical behavior of composite materials. Further complicating factors arise from the
inherent anisotropy of the piezoelectric materials. Nevertheless, a reasonable amount of
theoretical work has been directed towards the study of the effective electroelastic behavior
of piezoelectric composite materials.

The microstructural characterization and analysis of piezoelectric composites was
launched by Newnham’s (1978) connectivity theory. This theory is based on the combination
of mechanics of materials type parallel and series models. These analyses were extended by
Banno (1983) to consider discontinuous reinforcement through a cubes approach. A differ-
ent route was taken by Smith and Auld (1991) in the analysis of continuous fiber-reinforced
piezoelectric composites. In each of these approaches, however, a simplifying assumption
of either a constant stress or strain component in the composite has been made which then
leads to the application of Voigt or Reuss type estimates. A more rigorous treatment of
the coupled electroelastic fields in a piezoelectric concentric cylinder geometry has been
performed by Grekov et al. (1989). An interesting and unique approach has been recently
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taken by Zhou (1991) in which the coupled electroelastic fields in a piezoelectric composite
are modeled by continuum elastic and electric multipoles. To date, though, it appears that
only the work of Wang (1992) has incorporated the rigorous solution for the coupled
electroelastic fields in a piezoelectric inclusion into the analysis of the behavior of piezo-
electric composite materials. Wang’s (1992) solution, however, is strictly valid only in the
dilute limit where the interaction among reinforcement at finite concentrations is insignificant.
That such a small amount of work has been done in this area is somewhat surprising
considering the vast amount of corresponding research in the areas of uncoupled elastic and
electric composites.

Much of the theoretical study of the behavior of elastic and electric composites has
been focused on the development of micromechanics models, In general these are based on
the assumption of statistical uniformity where recourse is made to the ergodic assumption
that local details occur in any single specimen with the same frequency that they occur in
a single neighborhood in an ensemble of specimens. Subject to this assumption, ensemble
averages are replaced by volume averages over some representative volume which is small
relative to the specimen size but large relative to the microscale and thus on average is
typical of the entire composite. Those micromechanics theories which have received the
most attention and use are the dilute, self-consistent, Mori-Tanaka and differential
schemes. These methods have been applied with great success to a number of problems in
the uncoupled mechanical and electric behavior of composites. The fundamentals of the
methods are fairly well known [for example, see Mura (1987), Taya and Arsenault (1989)
and Aboudi (1991)] and thus an in-depth discussion of the methods is not presented here.
Recently, though, significant developments regarding theoretical aspects of these models
have been provided by Benveniste ef al. (1991). In particular, they have outlined the
theoretical grounds for which the models return symmetric elastic moduli—a necessary
criterion for any micromechanics model.

Common to each of these methods is the use of the well-known stress and strain
concentration factors obtained through the solution of a single particle embedded in an
infinite medium. To this end, recourse is usually made to Eshelby’s (1957) solution for the
stress and strain in an ellipsoidal inclusion. This is primarily due to two reasons: (i) under
a uniform applied load, the stress and strain in the ellipsoidal inclusion are uniform, thus
trivializing the otherwise complicated problem of determining the volume averaged fields,
and (i) the ellipsoidal shape allows the simulation of a wide range of microstructural
geometry ranging from thin flake to continuous fiber. It appears that these micromechanics
approaches have not been further applied to the coupled electroelastic behavior of piezo-
electric composites. The objective of this work is precisely that. This is motivated by
the reexamination of Deeg’s (1980) rigorous analytical solution to piezoelectric inclusion
problems by Dunn and Taya (1992) and their derivation of the piezoelectric analogs to
Eshelby’s tensor in elasticity. From the works of Deeg (1980) and Dunn and Taya (1992),
electroelastic concentration factors are derived and utilized in the generalization of the
aforementioned micromechanics models to piezoelectric composite media. Each micro-
mechanics approach is implemented through a matrix formulation and thus the final
expressions are convenient for numerical computation. The results of the proposed models
indicate that the evaluation of the effective electroelastic moduli of piezoelectric composite
materials can be done in a manner directly analogous to that of uncoupled elastic and
electric composites.

2. RESUME OF EQUATIONS AND NOTATION
There are four representations commonly employed in the theory of linear piezo-
electricity to describe the coupled interaction between the electric and elastic variables
(Ikeda, 1990). Here, the elastic strain, ¢, and electric potential gradient, ¢, are taken as
the independent variables and are related to the stress, ¢;;, and electric displacement, D,,
by:
Gy = ijmngmn+enij¢‘m (l)

Di = Cimnémn — Kind).n’ (2)
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where C,.., €,; and «x;, are the elastic (measured in a constant electric field), piezoelectric
(measured at a constant strain or electric field) and the dielectric (measured at a constant
strain) moduli, respectively. The strain and electric field, E;, are derivable from the elastic
displacement, u;, and electric potential as:

& = %(ui,j‘*‘uj,i)a 3
E = ““?3,:'- (4)

The complete formulation of the static theory of piezoelectricity requires eqns (1)-(4) to
be supplemented with the equations of elastic equilibrium and Gauss’ law of electrostatics
which in the absence of body forces or free charge are given by:

Gy = 0, (5)
D,;=0. (6)

In the preceding equations, conventional indicial notation is utilized where repeated sub-
scripts are summed over the range 1-3 and a comma denotes partial differentiation.

In the solution of piezoelectric inclusion and inhomogeneity problems, it is convenient
to treat the elastic and electric variables on an equal footing. To this end, the notation
introduced by Barnett and Lothe (1975) is utilized and is briefly reviewed here. This notation
is identical to conventional indicial notation with the exception that lower case subscripts
take on the range 1-3, while CAPITAL subscripts take on the range 14 and repeated
CAPITAL subscripts are summed over 1-4. With this notation, the elastic strain and electric
field are expressed as :

Emns M= 1329 33
Zyn = G

_Qs.m M= 4,
where Z,,, is derivable from U,, given by:

Uy, M=1273,
Un=16 M=4. ®

Similarly the stress and electric displacement are represented as :

Gifs J = 1,2, 3,
YD, J=4. @

The electroelastic moduli can then be represented as :

Commr T, M=1,23,
ew  J=1,23;M=4,
s J=4; M =1,2,3,
—Ki» S M =4,

Epn =

(10)

The “inverse” of E,y, is defined as F,;; and the symmetry properties of E,,,, are easily
derivable from those of Cy,, €,; and k,,. It is noted that E,,,, as defined by eqn (10), is
diagonally symmetric. With this shorthand notation, eqns (1) and (2) can be unified into
the single equation :
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z:i.l = iJMnZMns (1 ])

or inverting:

Zy = FAbiJZiJ- (12)

It is important to note that Z,,,, Uy, Z,;, Eyu, and F,,,, are not tensors. Thus, to write
corresponding equations in an alternate coordinate system, each individual tensor must be
transformed by the well-known laws of tensor transformation. The resulting tensors can
then be reunified into the form of eqns (7)-(10).

A matrix formulation

The key variables in eqns (7)—(10) can be represented by 9 x | column vectors (Z,,,
and Z,,) and 9 x 9 matrices (E;, and F ;) by utilizing the following mapping of adjacent
indices, e.g. (iJ) = {(Ji) and (Mn) = (nM)forJand M # 4

an-1 22)-2 (33)-3 (23)-4 (13)-5 (12)-6 (13)
14)-7 2498 (34 -9, (14)

where for E,;,,, and F,;; the first pair of indices indicates the row in the 9 x 9 matrix and the
second the column. By inspection of eqns (7)-(12) it is seen that the indices (44) do not
occur as a pair. The mappings in eqn (13) are simply those of the well-known Voigt elastic
constants. Those of eqn (14) are thus a generalization of the Voigt two-index notation to
include the piezoelectric and dielectric moduli. As employed here, the factor of two for the
shear strains is accounted for in the 9 x 1 column vector Z. This matrix formulation will be
utilized throughout the subsequent analysis and will be seen to greatly simplify the resulting
equations.

3. EFFECTIVE MODULI OF PIEZOELECTRIC COMPOSITES

General expressions for the effective electroelastic moduli of two-phase perfectly bonded
piezoelectric composites can be derived by considering the volume average of the piezo-
electric field variables o, g, D;, ¢

2 C|f:]+C222, (15)

z=CIZ;+C222, (16)

where an overbar denotes the volume average of a quantity and bold letters denote matrix
(9 x 1 or 9 x 9) quantities. The subscripts “1”” and “2” denote the two piezoelectric phases
and c; is the volume fraction of the ith phase. When considering matrix-based composites,
the subscript °1” will be reserved for the matrix. In each phase Z and X are related
through the matrix form of the constitutive equations (11) and (12).

Consider the two-phase composite being subjected to homogeneous elastic dis-
placement-electric potential boundary conditions, Z°, i.e. #,(S) = ¢j)x; and ¢(S) = ¢'x;
where S is the surface of the composite. By homogeneous boundary conditions it is meant
that when they are applied to a homogeneous solid they result in homogeneous fields.
Evaluation of the volume averaged piezoelectric fields results yields the effective electro-
elastic moduli, E:

£-EZ (17

Noting that the perturbation of the strain and potential gradient fields vanishes when
integrated over the domain of the entire composite (Dunn and Taya, 1992), Z can be
obtained as:
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Z2-=12" (18)

This is a generalization of the average strain theorem of elasticity [see for example Aboudi
(1991)]. Use of eqns (15)-(17) and the constitutive equations in each phase then yields:

E=E|+C2(E2—E|)A. (19)

Ineqn (19), A is the strain-potential gradient concentration matrix which relates the average
strain and potential gradient in phase 2 to that in the composite, i.c.

Z,=A2 = AZ". (20)

In a similar manner, under homogeneous traction-electric displacement boundary
conditions, X, the effective moduli, F, can be obtained as:

F=F, +c,(F,—F)B, (21)
where B is the stress-electric displacement concentration matrix given by :
£, =BEL =BZL". 22)

The estimation of A and B is thus the key to predicting the effective electroelastic moduli
E and F. The approximation of A and B through the use of various micromechanics models
is the subject of the subsequent section. In particular, attention will be devoted to obtaining
A and E as the companion solution for B and F readily follows.

4. MICROMECHANICS MODELS

The dilute approximation

The simplest approximations of A and B are A =1 and B =1 which represent a
generalization of the Voigt (1889) and Reuss (1929) approximations for the elastic moduli
of composite materials, respectively. The dilute approximation is then the next simplest
micromechanics approach. The key assumption made in the dilute approximation is that
the interaction among the reinforcing particles in a matrix-based composite can be ignored.
That the composite is assumed to be matrix-based renders the dilute approximation most
applicable to 3-0 and 3-1 [in the connectivity terminology of Newnham et al. (1978)]
piezoelectric composites. In these composites, the matrix is connected to itself in three
dimensions while the reinforcing phase is self-connected in zero and one dimensions respec-
tively. For the dilute approximation, the concentration factors A and B are obtained from
the solution of the auxiliary problem of a single particle embedded in an infinite matrix.
For an ellipsoidal particle, this solution has been obtained by Deeg (1980) and recently
reexamined by Dunn and Taya (1992) [see also the recent paper by Wang (1992) for an
alternate derivation] and is briefly outlined in Appendix A. The concentration tensor, A%,
is obtained as:

AY = [I+SE; '(E,—E))]"', 23)

where L is the 9 x 9 identity matrix and S is the 9 x 9 matrix representation of the constraint
tensors which are the piezoelectric analog of Eshelby’s tensor (Dunn and Taya, 1992). The
constraint tensors, S, are a function of the shape of the ellipsoid and the electroelastic
moduli of the matrix. Explicit expressions for S are given in Appendix B. It is of interest to
note the similarity of eqn (23) to the corresponding result in uncoupled elasticity (Benven-
iste, 1987) and electrostatics of dielectrics (Hatta and Taya, 1986). Equations (19) and (23)
then yield explicit expressions for the dilute predictions of effective electroelastic moduli of
piezoelectric composite materials. In the case of a continuous cylindrical fiber-reinforced
piezoelectric composite these agree with the results of Wang (1992). By noting that E, and

SAS 30:2-8
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E, are diagonally symmetric and following an aargument identical to that forwarded by
Benveniste et al. (1991), it can be shown that E*' possesses diagonal symmetry for matrix-
based phase piezoelectric composites.

The self-consistent method

The self-consistent scheme was originally put forward by Bruggeman (1935) in the
study of the conductivity of composite materials. The application of the method to the
mechanical behavior of polycrystalline and matrix based composites followed some time
later (Hershey, 1954 ; Kroner, 1958 ; Budiansky, 1965 ; Hill, 1965). The essential assumption
employed in the self-consistent method is that each particle sees the effective medium of as
yet unknown moduli. The concentration tensor A* is then given by :

A* = [I+S*E~'(E,—E)]". 24)

Upon comparison with A* of eqn (24), A* seems simple enough. When coupled with eqn
(19), though, it yields an implicit algebraic 9 x 9 matrix equation for E. The situation is
further complicated by the fact that S8 is itself a function of the unknown electroelastic
moduli, E. Here the superscript “sc” on S is used to denote that the effective electroelastic
moduli E are used in the evaluation of S. In general, S itself must be evaluated by a two-
dimensional numerical integration (Dunn and Taya, 1992) and thus the evaluation of E
becomes cumbersome. Since S must in general be computed numerically, E can be deter-
mined without a priori knowledge of the symmery of the effective electroelastic moduli as
the material symmetry has no significant effect on the numerical computation of S.

The Mori-Tanaka mean field approach

The original work of Mori and Tanaka (1973) was concerned with estimating the
average internal stress in a matrix material containing precipitates with eigenstrains (trans-
formation strains). Since then, the method has been successfully applied to many problems
in the mechanics and physics of composite materials. The method was initially linked with
Eshelby’s (1957) equivalent inclusion method and a review of many applications in this
context is given by Taya and Arsenault (1989). Recently, Benveniste (1987) re-examined the
underlying assumptions of the method and reformulated it in a direct approach. The method
has also received considerable attention from a theoretical standpoint (Weng, 1990, 1992 ;
Benveniste et al., 1991 ; Ferrari, 1991) and has been shown to be on strong theoretical
footing for the elastic behavior of two-phase composite media. In fact, Weng (1992) showed
that for a two-phase elastic composite containing ellipsoidal inclusions, the Mori-Tanaka
effective moduli coincide with Willis’ (1977) lower (upper) bound when the matrix is the
softest (hardest) phase. More recently, Dunn and Taya (1992) applied the theory through
an equivalent inclusion approach (see Appendix A) to model the coupled electroelastic
behavior of piezoelectric composites. They also showed that the theory is on strong theor-
etical footing for two-phase piezoelectric composites with aligned inclusions. Here, the
direct approach of Benveniste (1987) is utilized to obtain the concentration factor, A, as
the resulting expressions are equivalent to the original formulation of Dunn and Taya
(1992).

The key assumption in the Mori-Tanaka (1973) theory is that A is given by the solution
for a single particle embedded in an infinite matrix subjected to an applied electroelastic
field equal to the as yet unknown average electroelastic field in the matrix. This solution is
easily expressed as:

Z,=A%Z,, (25)

where A% is given by eqn (23).
With eqns (16), (20) and (25), the concentration factor, AMT, can be written in the
form as first proposed by Benveniste (1987) for elastic composites:
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AMT — Adil[ClI+CzAdil]—l. (26)

Equations (19), (23) and (26) then provide explicit expressions for the effective electroelastic
moduli of piezoelectric composites. It can be easily shown that the companion solution for
the electroelastic moduli, FMT is self-consistent in that FMT = EMT™'. This has been proven
by Dunn and Taya (1992) who have also shown that EMT possesses diagonal symmetry
and the correct limiting behavior in the low and high concentration limits for two-phase
piezoelectric composites.

The differential scheme

The differential scheme has been utilized by a number of researchers to predict the
effective moduli of elastic and electric composite media. The history of the method and its
application to elastic composites is detailed by McLaughlin (1977) and further references
can be found therein. The essence of the method is the realizable construction of the final
composite from the matrix material through the successive replacement of an incremental
volume of the current composite with that of the reinforcement. The method has been
recently extended by Norris (1985) to allow the incremental addition of both phases to
the current composite. The resulting effective elastic moduli are then dependent on the
replacement sequence leading to the final configuration. Here the special case when one
phase is incrementally added to the current material configuration is extended to piezo-
electric composite media.

Following McLaughlin (1977), the removal of a volume increment AV of the instan-
taneous configuration (thus a removal of c,AV of the reinforcing phase) leads to:

dv
des = 57 (1—c), @7

where V is the volume of the composite. Denoting E(c,+dc,) as the effective electroelastic
moduli at a reinforcement volume fraction of ¢, +dc,, use of eqns (19) and (27) leads to:

dE 1 dif
ac. = Tg, B DAY, (28)
where
Adif = [I+SdifE— l(E2 —E)] - 1. (29)

As in the self-consistent scheme, S% is a function of the electroelastic moduli, E, of the
instantaneous material. Formally, eqn (28) represents a set of 9 x 9 = 81 coupled nonlinear
ordinary differential equations which can be solved with the initial conditions:

E(c,=0)=E,. (30)

Again the work of Benveniste ez al. (1991) can be easily generalized to show that E predicted
by the differential scheme is diagonally symmetric for two-phase matrix based piezoelectric
composites.

5. RESULTS AND DISCUSSION

In the preceding section, each of the models has been developed for two-phase matrix
based piezoelectric composites. Strictly speaking, they are most applicable to 30 and 3-1
composites where the matrix is self-connected in three dimensions and the reinforcement
is self-connected in zero and one dimensions respectively. By modeling the reinforcement
as ellipsoidal, though, a 2-2 composite can be simulated as the ellipsoid degenerates to a
flat lamina. It appears that the differential scheme could be easily extended to treat both
phases on equal footing by proceeding along the lines of Norris (1985) in which both phases
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Fig. 1. Effective piezoelectric moduli (e;, = E,,;) for a porous PZT-7A ceramic as a function of
porosity volume fraction. The porosity is assumed to be spherical.

are incrementally added to the composite. As noted by Norris, though, the resulting moduli
are then dependent on the path of the incremental additions which is of some theoretical
concern. The self consistent scheme has traditionally received criticism for yielding unac-
ceptable results when the difference in moduli of the constituents is large. This, unfor-
tunately, is the case for many piezoelectric composites where the polymer phase is piezo-
electrically inactive.

It is also of interest to further comment on the form of the analytical predictions
yielded by each micromechanics model. The dilute and Mori-Tanaka methods yield explicit
results for the moduli. Only a single numerical evaluation of S% = SMT is then required
(except of course in the case where S can be obtained analytically as in Appendix C). The
self-consistent method on the other hand yields an implicit algebraic matrix (9 x 9) equation
for the effective moduli, resulting in recourse to a numerical scheme for their evaluation.
This becomes inconvenient as in each iteration S* must generally be computed numerically.
For the examples considered here, simple fixed point iteration was successful but the
requirement of up to 25 iterations for convergence was not uncommon for various degrees
of material symmetry and microsructural geometry. A numerical method such as the fourth
order Runge—Kutta integration scheme must in general be used with the differential method
which yields a set of (9 x 9 = 81) coupled nonlinear ordinary differential equations for the
effective moduli. Again, this becomes inconvenient as during each increment S% must
generally be computed numerically. Thus from a computational standpoint, the dilute and
Mori-Tanaka schemes are certainly advantageous.

Finally, the performance of each model for some typical piezoelectric composites is
illustrated and the micromechanics predictions are compared to existing experimental data
for fiber and particle reinforced piezoelectric composites. In Fig. 1, the piezoelectric moduli
e;; and e;, [see eqn (10)] are shown as a function of porosity for a porous PZT-7A
ceramic. The electroelastic moduli of the PZT-7A, and those of PZT-5 used in subsequent
computations, were obtained from Berlincourt (1971) and Chan and Unsworth (1989) and
are given in Table 1 where the well-known two index notation has been adopted.

In Fig. 1 it is seen that the predictions of the dilute, Mori-Tanaka and differential
schemes are fairly close for e;; but the dilute predictions far exceed the Mori-Tanaka
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Table 1. Electroelastic material properties

Ch Ci, Cis Cy Cus €31 €33 €15 kit K35t
(GPa) (GPa) (GPa) (GPa) (GPa) (C/m?) (C/m?) (C/m?) Ko —x;
PZT-7A 148 76.2 74.2 131 25.4 -21 9.5 9.2 460 235
PZT-5 121 75.4 752 111 21.1 —5.4 158 12.3 916 830
Epoxy 8.0 4.4 44 8.0 1.8 0 0 0 4.2 4.2
Polymer 3.86 2.57 2.57 3.86 0.64 0 0 0 9.0 9.0

t#, = 8.85 E-12 (C?/Nm?) = permittivity of free space.

and differential predictions for e;,. The self-consistent predictions, however, are in close
agreement at lower volume fractions but are not plotted past f & 0.2 as at this point other
electroelastic moduli vanish. This behavior is attributed to the fact that the porosity is
of vanishing stiffness and electric activity and is consistent with the behavior in the un-
coupled elastic case. In particular, it is similar to the self-consistent predictions of Norris
(1990) for the effective Poisson’s ratio of composite reinforced randomly oriented rigid
disks. In Fig. 2 similar analytical predictions for e;, and e;; are given for a composite
reinforced by short (aspect ratio = 10) PZT-7A fibers in an epoxy matrix. It is of interest
that even though the piezoelectric moduli of the epoxy vanish, the self-consistent estimates
are in line with those of the other models and certainly seem reasonable. This suggests that
it is the vanishing components of the noncoupling terms (elastic moduli and dielectric
constant) which lead to the unacceptable behavior of the self-consistent scheme. In Fig.
3, the Mori-Tanaka micromechanics predictions are shown for the piezoelectric strain
coefficients d,; and 4y, = d3;+d5,+d33 of a composite comprised of a PZT-5 matrix and
elliptical soft polymer reinforcement with the generatrix of the elliptical reinforcement
aligned with the x; axis. The strain coefficients d;; are obtained from the micromechanics
predictions as — Fy,/Fy9. Three values of the aspect ratio, « = a,/a, are considered which
correspond to circular fiber (x = 1), thin ribbon (x = 10) and lamina (x — o) reinforce-
ment. The strain coefficient ds; is seen to be insensitive to the in-plane shape of the
reinforcement. The hydrostatic strain coefficient, d,, however, varies significantly with the
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Fig. 2. Effective piezoelectric moduli (es; = Ey;) of a PZT-7A short fiber (a;/a, = 10) reinforced
epoxy composite as a function of fiber volume fraction.
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Fig. 3. Effective piezoelectric moduli {d;; = — Fy,/Foq, dy = dv,+dss+dy,) of a PZT-5 ceramic
reinforced by a continuous (&, — o0) polymer phase as a function of fiber volume fraction and the
in-plane reinforcement aspect ratio, a,/a,.

reinforcement shape. This is attributed to the increased anisotropic electroelastic interaction
resulting from the ribbon and lamina reinforcement. It is noted that when the elliptical
inclusion degenerates to a two-dimensional lamina (x — ), the results for d; agree with
the parallel model solutions of Newnham ez al. (1978) and Grekov et al. (1987).

Finally, it is of interest to compare the analytical predictions with existing experimental
results for the effective electroelastic moduli of piezoelectric composites. To this end,
two reinforcement geometries are considered : continuous fiber reinforcement (Chan and
Unsworth, 1989) and spherical particle reinforcement (Furukawa et al., 1976). In Fig. 4 it
is seen that the analytical predictions of d;; by the micromechanics models are virtually
indistinguishable for a continuous PZT-7A fiber reinforced epoxy composite. The material
properties in Table 1 were used for the computations with the exception that instead of the
tabulated value of Berlincourt (1971), the measured value of 4,; of PZT-7A obtained by
Chan and Unsworth (1989) was used. The micromechanics predictions are in excellent
agreement with the experimental results of Chan and Unsworth (1989) for the continuous
PZT-7A fiber reinforced epoxy composite. Although not shown, it is noted that the models
of Grekov et al. (1989) and Smith and Auld (1991) are in very close agreement with the
four micromechanics models. Finally, in Fig. 5 analytical predictions are compared to
experimental resulis obtained by Furukawa et al. (1976) for an epoxy matrix reinforced by
piezoelectric particles. The material properties used in the computations were those of PZT-
5 as taken from Furukawa et al. (1976) and Berlincourt (1971). Also shown are the
predictions of the cubes models of Banno (1983). There is seen to be a significant difference
in the predictions of the models with each resulting in good agreement in the low volume
fraction range. At a volume fraction of approximately 25%, the Mori-Tanaka and dilute
models are in the best agreement with the experimental results. It is at about this point,
however, that the Mori-Tanaka and dilute predictions begin to significantly diverge and it
is expected that the Mori-Tanaka estimates will be better than the dilute estimates at higher
volume fractions. The Mori-Tanaka and differential schemes are seen to be in relatively
close agreement for lower volume fractions but begin to differ appreciably at volume
fractions of the order of 20%. In light of the existing experimental data, though, it cannot
be ascertained which prediction will be better at higher volume fractions.
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predictions are indistinguishable.
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6. CONCLUSION

The rigorous analytical solution for the coupled electroelastic fields in a piezoelectric
inclusion (Deeg, 1980; Dunn and Taya, 1992) has been implemented in four micro-
mechanics models to determine the effective electroelastic moduli of a two-phase piezo-
electric composite. As in the uncoupled behavior, the dilute and Mori-Tanaka schemes
return explicit expressions for the effective electroelastic moduli. The self-consistent scheme,
on the other hand, returns an implicit algebraic matrix equation for the effective elec-
troelastic moduli. Application of the differential scheme formally results in a 9 x 9 system
of coupled nonlinear ordinary differential equations for effective electroelastic moduli. The
matrix formulation that is presented results in ease of implementation and generation of
numerical results. The only complicating factor is that S must in general be evaluated
numerically. The resulting matrix equations for the electroelastic moduli are completely
analogous to those for the elastic moduli of two-phase composites.

Numerical results have been presented to compare the predictions of each model for
a number of typical composite microstructures including a porous phase, continuous and
short fiber, particle, and lamina reinforcement. When the elastic and piezoelectric moduli
of the reinforcing phase vanish, the self-consistent scheme does not return physically
acceptable results over the entire range of volume fractions. This is consistent with the
corresponding self-consistent predictions for the elastic moduli of a porous anisotropic
elastic solid. For the examples considered here, however, the self consistent predictions
seem reasonable when only the piezoelectric moduli of the reinforcing phase vanish. In the
case of continuous fiber reinforcement, the micromechanics predictions are indis-
tinguishable and agree well with experimental results. The micromechanics predictions are
also in good agreement with the experimental results of a piezoelectric particle reinforced
polymer composite. In light of its ease of application and its good agreement with the
experimental data, a strong argument can be made for the use of the Mori~Tanaka mic-
romechanics scheme in the prediction of the electroelastic moduli of piezoelectric composite
materials.

Finally, a few comments regarding items that were not considered are in order. Any
prediction of the effective moduli of composite media should be judged with available
bounded solutions. To this end, in uncoupled behavior, the Mori-Tanaka scheme has been
shown to coincide with the upper and lower bounds (depending on which phase is the
stiffest) for both elastic and electric composites reinforced with ellipsoidal inclusions (Weng,
1992 ; Hatta and Taya, 1986). Whether this is the case with regards to piezoelectric media
remains an open issue. In fact, to the authors’ knowledge, rigorous bounds have yet to be
developed for the effective moduli of piezoelectric composites.

REFERENCES

Aboudi, J. (1991). Mechanics of Composite Materials: A Unified Micromechanical Approach. Elsevier, The
Netherlands.

Banno, H. (1983). Recent developments of piezoelectric ceramic products and composites of synthetic rubber and
piezoelectric ceramic particles. Ferroelectrics 50, 3-12.

Barnett, D. M. and Lothe, J. (1975). Dislocations and line charges in anisotropic piezoelectric insulators, Phys.
stat. sol. (b) 67, 105-111.

Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech.
Mater. 6, 147-157.

Benveniste, Y., Dvorak, G. J. and Chen, T. (1991). On diagonal symmetry of the approximate effective stiffness
tensor of heterogeneous media. J. Mech. Phys. Solids 39, 927-946.

Berlincourt, D. A. (1971). Piezoelectric crystals and ceramics. In Ultrasonic Transducer Materials (Edited by O.
E. Mattiat), pp. 63-119.

Bruggeman, D. A. (1935). Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. 1.
Dielektrizititskonstanten und Leitfahigkeiten der Mischkdrper aus isotropen Substanzen. Annalen der Physik
(Leipzig) 24, 636.

Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223-227.

Chan, H. L. W. and Unsworth, J. (1989). Simple model for piezoelectric ceramic/polymer 1-3 composites used
in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectrics and Frequency Control 36, 434441,

Deeg, W. F. (1980). The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D
Dissertation, Stanford University.



Micromechanics predictions of piezoelectric composites 173

Dunn, M. and Taya, M. (1992). An equivalent inclusion formulation for piezoelectric composite materials.
(Submitted for publication.)

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems.
Proc. R. Soc. Lon. A241, 376-396.

Ferrari, M. (1991). Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory.
Mech. Mater. 11, 251-256.

Furukawa, T., Fujino, K. and Fukada, E. (1976). Electromechanical properties in the composites of epoxy resin
and PZT ceramics. Jap. J. Appl. Phys. 18, 2119-2129.

Gavazzi, A. C. and Lagoudas, D. C. (1990). On the numerical evaluation of Eshelby’s tensor and its application
to elastoplastic fibrous composites. Computl Mech. 7, 13-19.

Grekov, A. A., Kramarov, S. O. and Kuprienko, A. A. (1987). Anomalous behavior of the two-phase lamellar
piezoelectric texture. Ferroelectrics 76, 43-48.

Grekov, A. A, Kramarov, S. O. and Kuprienko, A. A. (1989). Effective properties of a transversely isotropic
piezocomposite with cylindrical inclusions. Ferroelectrics 99, 115-126.

Hatta, H. and Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. Int.
J. Engng Sci. 24, 1159-1172.

Hershev, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech. 21,
236-241.

Hill, R. (1965). A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213-222.

Ikeda, T. (1990). Fundamentals of Piezoelectricity. Oxford University Press, Oxford.

Kroner, E. (1958). Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls, Z.
Phys. 151, 504-518.

McLaughlin, R. (1977). A study of the differential scheme for composite materials. /nt. J. Engng Sci. 15, 237-
244.

Mori, T. and Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting
inclusions. Acta Metail. 21, 571-574.

Mura, T. (1987). Micromechanics of Defects in Solids (2nd Edn). Martinus Nijhoff, Dordrecht.

Newnham, R. E., Skinner, D. P. and Cross, L. E. (1978). Connectivity and piezoelectric-pyroelectric composites.
Mater. Res. Bull. 13, 525-536.

Norris, A. N. (1985). A differential scheme for the effective moduli of composites. Mech. Mater. 4, 1-16.

Norris, A. N. (1990). The mechanical properties of platelet reinforced composites. Int. J. Solids Structures 26,
663-674.

Reuss, A. (1929). Berechnung der fliessgrenze von mischkristallen auf grund der plastizitdtshbedingung fir ein-
kristalle. Z. angew. Math. Mech. 9, 49-58.

Smith, W. A. and Auld, B. A, (1991). Modeling 1-3 composite piezoelectrics : thickness-mode oscillations. JEEE
Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38, 4047,

Taya, M. and Arsenault, R. I. (1989). Metal Matrix Composites, Thermomechanical Behavior. Pergamon Press,
Oxford.

Voigt, W. (1889). Uber die Beziechung zwischen den beiden Elastizititskonstanten isotroper Korper. Weid. Ann.
38, 573-587.

Wang, B. (1992). Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids
Structures 29, 293-308.

Weng, G. (1990). The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman—Walpole
bounds. Int. J. Engng Sci. 28, 1111-1120.

Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Engng Sci. 30, 83-92.

Zhou, S. (1991). A material multipole theory of elastic dielectric composites. Int. J. Solids Structures 28, 423—
447.

APPENDIX A. CONCENTRATION MATRIX, A

Consider a piezoelectric composite consisting of an infinite domain (D) containing an ellipsoidal particle
(inhomogeneity). The ellipsoidal particle is of the same shape and aligned with the a;, principal axis coincident
with the x axis. The piezoelectric particle (Q) has electroelastic moduli E, while the matrix, D-Q, has electroelastic
moduli E,. The composite is subjected to the far-field applied stress and electric displacement E°. Using the
equivalent inclusion method for piezoelectric composites (Deeg, 1980; Dunn and Taya, 1992) the stress and
electric displacement in the representative particle can be written as:

L= E,[Z°+Z)
=E,[Z°+Z-2Z%, (AD)

where Z represents the perturbation of the strain and electric fields in the particle with respect to those in the
matrix and Z* is the fictitious eigenfield required to ensure that the equivalency of eqn (A1) holds. In eqn (A1),
Z and Z* are related through:

Z = SZ*, (A2)

where 8 is the coupled electroelastic analog of Eshelby’s tensor and is defined explicitly in Appendix B. The strain
and potential gradient in the inclusion (which are uniform) are given by:

SAS 30:2-C
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Z,=2"+S8Z* (A3)
With eqns (A1) and (A3), Z, can be obtained as:
I+SETYE,~ED)Z, = Z°. (Ad)
From egns (A4) and (20), A% is seen to be given by:
A% = [1+SE; (E,—E)]". (A5)

The stress and electric displacement concentration factor, BY, can be easily obtained in an analogous manner.

APPENDIX B. CONSTRAINT TENSORS, Syn.

The constraint tensors, Sy, can be expressed in terms of surface integrals over the unit sphere as (Dunn
and Taya, 1992):

i
Ll Embj 75 Gnin@ + G @1 4S@), M = 1,23,
Shtnas = =1 (Bl)
a,aa i
'4; > Euw J:z|= N G () 48 (2), M =4,
where |z} = 1 is the surface of the unit sphere { = [a3z} +adz3+a3z2}"?, and:
Gusal®) = Zian;l}(z)v (B2)

and Ky; = Epa2i2,. To perform the integration of egns (B1), the unit sphere is parameterized as (Dunn and
Taya, 1992):

1~V cos 0 1—-¢)"%sin 0
G U=Veoss & (-E)"snd & ®)
a, a, a as as

In general, for an anisotropic medium the integrals in eqns (B1) cannot be evaluated analytically. In these
cases, the integration is easily performed by Gaussian quadrature. Following the work of Gavazzi and Lagoudas
(1990) for elastic inclusions in an anisotropic elastic matrix, a typical term is evaluated as:

l M N
Smnab = ?8«“1[ z‘ Z] {Cljnb[Glm‘in (gqs é}p) + anlm(gq’ é}p)] = €iab [Gmdin (eq’ é}p) + Gn4im (gq, ﬁlp)]} qua (B4)
p=1g=

where p and g are the integration points over the unit sphere parameterized by ¢, and 8, respectively, and W, are
the Gaussian weights.

APPENDIX C. CONSTRAINT TENSORS, §,,., FOR ELLIPTICAL INCLUSIONS

For a two-dimensional elliptical inclusion (a; — 00, o = @,/a,) in a transversely isotropic matrix, the nonzero
components of the constraint tensors are explicitly obtained as:

4 2C1]+C12
Sin = 2(a+l)2[ o +(2a+l)].
« a’*+a+l C
S22 = 822 = Shaat = Sz = m[—&—“ - Z::"?]y
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s o QRa+1)C\,~Cy,4
"2 T+ )? Cu ’
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St133 —E.’—:m
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s _ o (@+2)C;—Cy,
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[ 4 2Cn+C;2 a+2
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1
S2323 = S3232 = Szasz =8 = m,

Cc, 1
S35 = Coatl’
ey |1
Sno = ar T
o
Sarar = ﬁ,
1
S424z = m (Cl)
For a circular cylindrical inclusion (x = 1), the nonzero components of the constraint tensors reduce to
5C,,+C
S||1|=Suzz=#“lz,
3¢h—-C
S22 = Szm = 8121 =S = "%&Tu,
Si33 = S35 = Si331 = 8313 =S = S132 = Sa32 = S3223 = L
3C,,-C
Stz = Snn '—"ISIT”“‘,
Ci
Si=S8 =0,
1133 2233 2C,,
e
Siia = Szzu = 2C3':| s
Spa = Sa242 = % (CZ)
For a ribbon-like inclusion (@, » a,), the nonzero components of the constraint tensors reduce to:
3¢, +C
Siin = _IELETE“,
I C+C
Si22= Sy = Si221 = Sn2 =E‘—IZIT””%
a
Si3i3 = Sy = S = Sniz = E’
C—C
S =— __'_2"_6;&“’
Cis
Sz = C., a,
€31
Stias = C, o,
2C,,—-C
S = %a,
Cy,—C
Sy = 1= ““21—6'“—1201,
1—a
Sy = S3232 = S2332 = S3223 = T’
CIJ
Sy233 = C_”(l_a)’
I
S2243 = C“ (1 a)’
Saa =0,
Si242=1—a (C3)

The constraint. tensors are represented in a 9 x 9 matrix format as prescribed by eqns (13) and (14). It is noted,
however, that in general S is not diagonally symmetric and that care must be taken in the matrix representation
of S to correctly account for the factor of two with regards to the shear strains.



